1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Clin Genet. 2011 April ; 79(4): 301-320. doi:10.1111/j.1399-0004.2010.01592.x.

Nature and Nurture: the complex genetics of myopia and
refractive error

Robert Wojciechowski, OD, MSc, PhD

Abstract

The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause
blurred vision. Uncorrected refractive errors are the most common causes of visual impairment
worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next
decade. Experimental, epidemiological and clinical research has shown that refractive
development is influenced by both environmental and genetic factors. Animal models have
demonstrated that eye growth and refractive maturation during infancy are tightly regulated by
visually-guided mechanisms. Observational data in human populations provide compelling
evidence that environmental influences and individual behavioral factors play crucial roles in
myopia susceptibility. Nevertheless, the majority of the variance of refractive error within
populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two
dozen loci, while association studies have implicated more than 25 different genes in refractive
variation. Many of these genes are involved in common biological pathways known to mediate
extracellular matrix composition and regulate connective tissue remodeling. Other associated
genomic regions suggest novel mechanisms in the etiology of human myopia, such as
mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken
together, observational and experimental studies have revealed the complex nature of human
refractive variation, which likely involves variants in several genes and functional pathways.
Multiway interactions between genes and/or environmental factors may also be important in
determining individual risks of myopia, and may help explain the complex pattern of refractive
error in human populations.
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Introduction

Ocular refractive errors are optical defects in which images of viewed objects do not
coincide with the retinal plane, causing blurred vision. There are two forms of spherical
refractive errors: myopia and hyperopia (figure 1). Because myopia has been the most
widely studied refractive error, it is the primary focus of this review. Ocular refraction,
defined as a quantitative measurement of the magnitude of refractive errors, will also be
discussed when applicable.

Refractive errors are the most widespread human eye disorders (1). Myopia affects more
than one in four people over age 40 in the United States and Western Europe while visually
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significant hyperopia afflicts about ten percent of individuals in the same age group (2). In
some urban areas in East Asia, the prevalence of myopia among teenagers and young adults
exceeds 70% (3-5). By the year 2020, it is estimated that 2.5 billion people--one third of the
world’s population--will be affected by myopia alone (2). Myopia is a risk factor for a
number of ocular conditions including: peripheral retinal degenerations; age related
cataracts; glaucoma; and choroidal neovascularization (6). Pathological myopia is
characterized by a progressive elongation of the eye globe accompanied by potentially-
blinding degenerative changes in the retina and choroid (7).

Although they can usually be corrected by optical means or with refractive surgery,
uncorrected or poorly-corrected refractive errors are the most common causes of visual
impairment in both industrialized and developing nations (1,8-11)_ENREF_6. Worldwide,
more than 150 million people are estimated to be visually impaired because of uncorrected
refractive error, of which 8 million are functionally blind (12). The global economic
productivity loss due to visual impairment from uncorrected refractive error has been
estimated at $268 billion (13).

It is generally accepted that the distribution of refractive errors in human populations is
determined by complex interactions of biological, environmental and behavioral factors
(14,15). Though numerous risk factors have been studied over decades of epidemiological
and experimental research, a comprehensive mechanistic framework for 7refractive error
development in humans remains elusive.

Anatomical and optical basis of refractive errors

Clear vision requires an optical system that properly focuses images of viewed objects on
the eye’s sensory tissue, the retina. This is accomplished through a precise coordination of
the refractive components to align of the eye’s focal point with the retinal plane. Any
departure from a coincidence between the focal point and the retina will result in reduced
image contrast at the retina and cause subjectively blurred vision. Myopia (or
nearsightedness) occurs when distant objects focus anteriorly to the retina. Experimental
myopia models and epidemiological data have shown that myopia is the result of a
disproportionate elongation of the posterior segment of the eye, whose physical boundary is
provided by the fibrous sclera (figure 1). In contrast, hyperopia (or farsightedness) is due to
a relatively short eye for which the focal point is located posterior to the retina. Myopia and
hyperopia together form the (spherical) refractive errors or ametropias.

The severity of refractive errors is typically quantified in terms of the optical power of a lens
(in vergence diopters (D)) necessary to correct the optical defect of the myopic or hyperopic
eye. By convention, myopia is quantified with negative values on the dioptric scale while
hyperopia is designated by positive numbers. Most studies of myopia or hyperopia define
these phenotypes as binary traits using somewhat arbitrary cutoffs of the underlying
refractive values. These thresholds typically range between —0.5 D and —1D for mild
myopia, —5 D to —6 D for high myopia, and —10 D or less for extreme myopia. The term
“pathological myopia” is also commonly used and should be reserved for cases of high
myopia characterized by extreme, progressive, ocular growth accompanied by potentially
visually-devastating sequellae.

Environmental influences on refractive error

Both biological (nature) and environmental (nurture) sources of refractive variation are
likely to be present in most human populations. A complete account of the research into the
etiology of refractive error is beyond the scope of this review. We present below some of the
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major findings supporting environmental and/or genetic effects on refractive development.
A summary of these and other contributors to refractive variation are outlined in table 1.

Animal models of experimental myopia

A large body of evidence from over three decades of animal studies has shown that
manipulations of the visual environment can induce predictable changes in scleral growth
and lead to experimentally-induced refractive errors. In the late 1970s, three seminal papers
reported that variations in the early visual experience of animal models could lead to altered
eye growth and, as a result, to changes in ocular refraction (16-18). Specifically, visual form
deprivation (produced by eyelid suture or via translucent occluders) induced seemingly
unconstrained ocular elongation and corresponding myopic refractive changes in chick (17),
tree shrew (16), and macaque monkey (18) (figure 1, bottom right). Additionally, studies in
children whose vision had been disrupted during infancy confirmed that form deprivation-
induced myopia can also occur in humans during susceptible periods of early ocular
development (19-21).

These early animal studies spawned research into experimentally-induced refractive errors
which lead to the development of a variety of vertebrate animal models, environmental
manipulations and refractive error control paradigms. One of the fundamental insights of
this important body of work was that changes in ocular growth patterns in a number of
vertebrate species can be caused not only by visual form deprivation, but also by optical
defocus (22-25). Specifically, the introduction of negatively-powered lenses in front of
normally developing chick (24,25) and primate (22,23,26)_ENREF_18 eyes can potentiate
compensatory increases in the rate of eye growth, and cause relative myopia (compared to
untreated eyes). Positive lenses, on the other hand, tend to arrest eye growth during early
visual development and cause relative hyperopia.

Animal models have provided invaluable insight into the complex biological processes
likely to be involved in human ocular growth and refractive development. The basic model
behind refractive control during infancy involves a visually-driven feedback mechanism that
modulates eye growth. In this model, environmental exposures trigger a visually-evoked
signaling cascade that originates in the retina, passes through the vascular choroid (figure 1,
top right), and ultimately initiates scleral remodeling (see (27-31) for reviews). The sclera is
a rigid, highly-organized, connective tissue whose gene-expression profile is similar to that
of cartilage (32) and is comprised of extracellular matrix (ECM) and matrix secreting
fibroblasts (33). Hence, the biological mechanisms involved in refractive error are thought
to ultimately act through differential effects on scleral growth via active ECM remodeling.

Age-dependent changes in refractive error

Epidemiologic data show that refractive development is a dynamic process and that
refractive changes occur throughout life at variable rates. Data from human and animal
studies show a highly variable distribution of refractive error during the neonatal period,
typically centered in the hyperopic ranges (26,34,35). Though the human eye undergoes
rapid growth during early childhood--increasing in length from approximately 18 mm at
birth to 22-23 mm at three years of age--the variability of refractive error decreases
progressively during this period (36—39). At age 5, most children are functionally
emmetropic (39-42). This tightening of the standard deviation of refractive error during
infancy and early childhood is postulated to be due to the process of “emmetropization” in
which eye growth is regulated by a visually-guided feedback mechanism. After the early
period of rapid eye growth, the human eye undergoes slow refractive changes that often
culminate in the development of myopia (43). During school years, the distribution of
refractive errors gradually shifts towards more myopia with increasing age. Corneal
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curvature appears to remain relatively stable after age 6, and therefore does not play an
important role in juvenile and adult-onset myopia (44). Instead, human myopia is largely the
result of age-dependent increase in ocular axial length (36,45,46), corroborating evidence
from animal myopia models. Although the rate of refractive change during late childhood
can vary between populations and ethnicities, the incidence of myopia increases
progressively from pre-school years and generally reaches its zenith around 9-12 years of
age (43,47-50). By early adulthood, the rate of change in ocular refraction tends to decline
and the prevalence of myopia stabilizes. During middle age (roughly between age 40 and
60), the prevalence of myopia gradually declines and mean refractive errors become more
hyperopic (51-53).

Ethnic and geographic influences on refractive error

It is inherently problematic to make rigorous between-study comparisons of refractive error
incidence and prevalence data because of a wide variability of sampling methodology,
examination methods and diagnostic criteria utilized. The Refractive Error Study in Children
(RESC) (54) was designed, in part, to assess the prevalence of refractive errors in 5 to 15
year-old children in various geographical regions while using standardized sampling,
examination protocols, and diagnostic criteria. Surveys were conducted at eight locations:
rural Nepal (55); rural and urban zones in India (56,57) and China (5,58); a semi-urban area
in Durban, South Africa (59); and suburban districts of Santiago, Chile (60) and Kuala
Lumpur, Malaysia (61). Results showed very low prevalences of myopia among 5 year-olds
across study sites--ranging from 0.45% in rural Nepal (55) to 4.29% in urban New Delhi,
India (56). However, the prevalence of refractive errors varied widely among fifteen year-
olds (figure 2): the prevalence of myopia was 0.79% in rural Nepal (55); 48.7% in rural
China (58); and 79.9% in urban Liwan District, Guangzhou, China (5). This series of studies
clearly shows a wide variation in the age-specific prevalence of refractive errors between
geographic regions. Interestingly, Chinese and Indian children living in urban areas showed
significantly greater rates of myopia than their ethnicity-matched counterparts from more
rural regions (5,56-58). A higher prevalence of myopia in urban areas has also been
documented in other populations (62—65). These regional differences in the prevalence of
myopia argue in favor of a strong environmental influence on refractive development.

The RESC survey of Malaysian children showed a considerably higher prevalence of
myopia among ethnic Chinese than in children of Malay, and Indian ancestries (61). A
similar excess risk of myopia among ethnic Chinese subjects has been observed in male
military recruits (4) and school children (66) in Singapore. High risks of myopia among
children of East Asian ancestry have also been reported in Australia (67), the United States
(68) and the United Kingdom (69). Although estimates from individual studies vary, urban
populations in East Asia show consistently high rates of myopia (often exceeding 80%)(42).
Whether this is due to inter-ethnic differences in the genetic predisposition to myopia or to
culture-specific environmental influences remains uncertain.

The epidemiological study of genetically or culturally isolated populations may help provide
important clues about the multifactorial etiology of refractive error. For example, Orthodox
Jewish communities are thought to suffer disproportionately from myopia (70,71). In a study
of ocular refraction in Israel, Zylbermann et al. (71) found that teenage Jewish boys who
attended Orthodox schools were, on average, 2.4 D more myopic than boys who were
educated in secular school (mean refractive error = —2.9 for Orthodox school and —0.50 D
for general school). In contrast, the refractive error distribution was no different between
girls educated in Orthodox schools and girls who attended general schools (mean refractive
error = —0.90 in both groups). Orthodox boys and girls attend separate schools with different
curricula, with boys’ schools emphasizing intense and prolonged study of religious texts.
The authors postulated that the intensive visual demand associated with the religious
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education of Orthodox males is likely responsible for high rates of myopia in the Jewish
Orthodox community. Interestingly, two genetic loci for myopia susceptibility (72)(MYP6)
and ocular refraction (73)(MYP14) originally identified in American Orthodox Jewish
families have been replicated in linkage studies in Midwestern American pedigrees (74)
(MYP6), the Old Order Amish (75)(MYP14), and in an international consortium of high-
grade myopia (76)(MYP6 and MYP14).

Environmental and behavioral risk factors for refractive error

There is accumulating epidemiological evidence that the prevalence of myopia has increased
appreciably in many areas across the globe within the last two-to-three decades (3,77-79).
This secular trend is most marked in East Asia, where myopia now affects a significant
proportion (over 80% in some areas) of young adults. Using a series of nationwide surveys,
Lin et al. documented a significant increase in the prevalence of myopia among Taiwanese
school children between 1983 and 2000 (3). The estimated prevalences of myopia at ages 7,
12, 15 and 18 were: 5.8%, 36.7%, 64.2% and 74% in 1983; and 21%, 61%, 81% and 84% in
2000. Moreover, the prevalence of high myopia (worse than —6 D) among 18 year-old
students had increased from 10.9% in 1983 to 21% in 2000 (3). Matsumura and Hirai
showed an increased prevalence of myopia, and a corresponding shift in mean refractive
error towards myopia, among Japanese school children over a 12-year period from 1984 to
1996 (77). Nevertheless, the study was conducted in selected schools so their results cannot
necessarily be extrapolated to the general Japanese population. The rate of myopia also
appears to be increasing in some populations outside of East Asia. Vitale et al. estimated the
prevalence of myopia in 12 to 54 year-old Americans to have increased from 25% to 41.6%
between 1971-72 and 1999-2004 (79). Similarly, in a retrospective study of over 900,000
Israeli military recruits, Bar Dayan documented significant increases in the prevalence of
high, moderate, and low myopia between 1990 and 2002 (78). Because the genetic makeup
of these populations has not changed within this short time span, it is unlikely that genetic
factors played a role in these trends.

In addition to documenting significant geographic and ethnic differences in refractive error
distribution, epidemiological investigations have shown correlations between a variety of
environmental exposures and the risk of myopia (table 1). For instance, population-based
studies have reported associations between myopia and higher socioeconomic status (80)
and greater levels of educational attainment (81-86). High prevalences and progression rates
of myopia have been observed in individuals in visually intensive occupations such as
clinical microscopists (87), carpet weavers (88) and visual display terminal workers (89).
Within the context of the myopization process, education, socioeconomic status, and
occupation are generally considered to be indirect surrogates for more proximal risk factors
such as near-work visual demand and other unmeasured environmental variables. Studies of
the effect of reading have attempted to show a more direct relationship between myopia and
near work activity. Saw et al. found that myopic schoolchildren in China reported spending
more time reading than non-myopic children (62). In a separate study, the same group
reported that the number of books read was a better predictor of higher myopia among 7-9
year-olds than the time spent reading (90). Mutti et al. reported that children with myopia
spent significantly more time studying, more time reading, and less time playing sports than
non-myopic children (91). In a cross-sectional investigation of 12 year-old Australian school
children, Ip et al. found no significant relationships between myopia and time spent in near
work. However, they showed significant associations of myopia with close reading distance
and sustained, continuous, reading (92). Studies on the effect of reading on the rate of
progression of myopia have provided conflicting results. In a study of Singapore school
children, near work was not associated with worsening myopia (93). On the other hand,
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myopic children in Finland who spent more time reading had faster rates of myopia
progression (94).

The relationship between reading and near work activity and myopia susceptibility is
complex and still poorly understood. Estimates of exposure to near work are subject to
considerable measurement error and are prone to bias in retrospective studies. Effect
estimates may vary depending on the unit of measurement chosen (i.e., intensity, duration,
reading distance or cumulative dose), outcome definitions (myopia, refractive error, rates of
progression), or the ages, ethnicities and social circumstances of study subjects. These
discrepancies in study characteristics can yield inconsistent results. Moreover, the current
ubiquity of technologies such as computers, cellular and smart phones, and gaming devices
has added a layer of complexity to the near work question. Indeed, it could be argued that
the recent increase in myopia prevalence in East Asia reported in some studies may be the
result of a steady rise in the use of modern electronic devices over the past three decades.
Nevertheless, a direct link between the utilization of electronic devices and myopia
development has yet to be convincingly established and future studies should attempt to
validate and quantify this relationship.

While excessive reading or near work activity increase the risk for myopia, other
environmental factors (such as participation in sports and time spent outdoors) have shown
protective relationships. Recent studies have shown that time spent outdoors and
participation in outdoor sports during childhood is associated with a decreased risk of
myopia (95-97). Moreover, the beneficial effect of outdoor activity appears not to be the
result of a concomitant reduction in near work. There is also evidence that genetic factors
may interact with outdoor activity on the risk of myopia. Jones et al. (95) have shown that
the inverse relationship between outdoor activity and myopia development may be limited to
children with a strong familial predisposition to myopia (i.e., children with 2 myopic parents
compared to children with either no or one myopic parent).

Genetic influences on refractive error

Heritability and familial aggregation of refractive errors

While behavior and environment play important, if not entirely elucidated, roles in refractive
development, it has been convincingly established that heritable (presumably genetic)
factors are also important in ocular refraction. Heritability studies have been conducted in a
number of populations using twin data (98-101), as well as in sibship and nuclear family
study designs (102-105). These reports provide consistently high heritability estimates for
ocular refraction ranging from 50%to more than 90%.

Familial aggregation studies have estimated sibling recurrence risks (As) of common forms
of refractive errors to range from 2 to 5.61 for myopia, and 1.58 to 4.87 for hyperopia
(102,103,106-108). More extreme refractive errors show even greater familial aggregation
than do milder forms (107,109). Moreover, children of myopic parents tend to have longer
eyes (110) and are more likely to develop myopia during childhood or adolescence (111-
113). Segregation analyses of population based samples are consistent with a complex
inheritance pattern for ocular refraction involving several genes and/or shared environmental
factors (114,115).

The strong familial effects for refraction phenotypes (as evidenced by high heritabilities and
strong familial aggregation) are present across populations with varying underlying
distributions of refractive error. This observation is consistent with the hypothesis that
environmental influences may drive regional and ethnic differences in refractive
distribution, but that within-population variation is largely due to genetic factors. Whether
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genes and environment contribute independently to the total phenotypic variance within
populations, or whether gene-environment statistical interactions also play a role has
remained largely unexplored in population genetic studies.

Syndromic refractive errors

Familial refractive errors can occur in simple (non-syndromic) forms or can be accompanied
by other systemic or ocular abnormalities. Syndromic refractive errors are generally
monogenic or oligogenic and can occur within a wide spectrum of clinical presentations.
Myopia has been reported in a number of ocular syndromes including: X-linked and
autosomal recessive congenital stationary night blindness (CSNB; OMIM 310500); X-linked
retinitis pigmentosa 2 (RP2; OMIM 312600); and X-linked Bornholm eye disease (OMIM
310460). The myopia in X-linked ocular syndromes appears to be secondary to mutations in
loci involved in retinal photoreceptor function (NY X, RP2, MYP1). Myopia can also be a
characteristic feature in heritable connective tissue disorders such as: Knobloch syndrome
(OMIM 267750); Marfan syndrome (OMIM 154700); and Stickler syndrome (type 1,
OMIM 108300; type 2, OMIM 604841). Knobloch syndrome has been associated with
mutations in COL18A1 whereas Marfan syndome is due to a defect in the fibrillin-1 gene
(FBN1). These loci have not been shown to be associated with common forms of refractive
error. Stickler syndrome is a phenotypically heterogeneous condition characterized by ocular
abnormalities (congenital vitreous defects with myopia and/or retinal detachment) variously
accompanied by auditory, musculoskeletal, craniofacial and cardiac defects. Type 1 and type
2 Stickler syndrome are caused by mutations in COL2A1 and COL11A1, respectively (116).
Interestingly, two studies (117,118) have independently reported statistical associations of
simple myopia phenotypes with a COL2A1 polymorphism (rs1635529), suggesting that this
gene, which has been implicated in a wide variety of chondrodysplasias (OMIM 120140),
may also be involved non-syndromic refractive errors.

Genetic linkage studies of myopia and ocular refraction

The first genetic locus for non-syndromic high myopia (MYP2) was mapped in 1998 to
18p11.31 by Young and her collaborators (119). A number of groups have since reported
significant linkage of refractive phenotypes to several independent genetic loci; the Online
Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim)
currently lists 16 named loci (MYP2-MYP17) for non-syndromic high myopia, common
myopia or ocular refraction, distributed among 13 chromosomes (MYP1 (120) was mapped
in a syndromic form of X-linked recessive myopia). At least 7 loci for refractive phenotypes
(MYP1, MYP3, MYP6, MYP11, MYP12, MYP14 and MYP17) have been successfully
replicated in independent linkage datasets (74-76,121-125).

Familial linkage studies highlight the heterogeneous genetic etiology of refractive errors.
Familial refractive errors can exist in simple Mendelian forms (119,126), be features of
systemic (7,127) or ocular (120) syndromes, or follow complex familial transmission
patterns (114). Many loci for refraction traits were identified in families who segregated
high myopia consistent with autosomal-dominant modes of transmission (119,123,128-132).
Other loci were mapped using either binary-trait or quantitative-trait linkage analyses of
milder refractive errors with complex inheritance (72,73,122,124,133,134). Though
differences in phenotype definitions, modes of inheritance, and ascertainment criteria
between studies limit the generalizability of linkage results, replication of linkage signals do
suggest some etiological overlap. Moreover, we believe that familial linkage studies will
remain important in dissecting the complex genetics of human refractive error, particularly
as the rapid technological advances will allow for affordable sequencing of genomic regions
under linkage peaks.
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Genetic association studies of refraction phenotypes

Candidate-gene association studies—Numerous functional and positional candidate
genes have been queried in genetic association studies of refractive traits. Table 2
summarizes results of studies that reported statistically significant associations to myopia or
ocular refraction. Positive associations have been reported for variants in genes known to be
involved in extracellular-matrix (ECM) growth and remodeling pathways. These include
genes that code for a variety of extracellular constituents including: collagens (COL2A1
(117,118), COL1A1 (118)); transforming growth factors (TGFB1 (135), TGFB2 (136),
TGIF1 (137)); the hepatocyte growth factor (HGF(138-140)) and its receptor (CMET(141));
insulin-like growth factor (IGF1 (142,143)); matrix metalloproteinases (144,145) (MMP1,
MMP2, MMP3 and MMP9); and the proteoglycan lumican (LUM(146-148)). Figure 3
shows a first-order biological interaction network for the refraction-associated genes in table
2 (genes that do not interact directly with other genes in the network were omitted for
clarity). The biological network in figure 3 was generated using the “direct interactions”
network building algorithm implemented in the MetaCore software suite (GeneGo software
Inc., St. Joseph, MI), which utilizes a database derived from manually-curated scientific
literature on proteins and small molecules. Of particular interest is the relationship between
these gene products and the collagens, which constitute over 90% of the mammalian sclera
(33,149,150). As has been noted above, the sclera has been shown to undergo active growth
and remodeling in animal myopia models. Hence, these association data support
experimental results and provide strong evidence that the genetic basis for human refractive
error is partially explained by variations in genes that directly affect ECM composition in
scleral tissue, leading to differential rates of ocular enlargement and differences in
susceptibility to myopia. In this partial model of refractive development, genetic variants
that directly or indirectly increase ECM degradation in response to myopiagenic signals
would be expected to increase the rate of eye growth and lead to relative myopia.

To date, the majority of positive candidate gene associations have been reported for high
myopia (table 2). At least two of these genes, HGF (140) and COL2AL1 (118), have also
shown associations to milder refraction phenotypes (117,138,139). These results, and recent
studies that reported genetic associations between ocular refraction and polymorphisms in
matrix metalloproteinase genes (144,145)(MMP1, MMP2, MMP3 and MMP9), suggest that
common biological pathways may underlie extreme myopia and milder cases of refractive
error. Matrix metalloproteinases are a major group of zinc-dependent enzymes that regulate
cell-matrix composition by cleaving a number of ECM constituents (151). Importantly,
MMPs interact biologically with substrates of genes that have shown to be related to
refractive phenotypes in association studies (table 2, figure 3). Although the simplified
network presented in figure 3 is undoubtedly incomplete and represents only one potential
pathway for refraction control, it does illustrate the complex relationships between genes
presumed to be involved in human refractive variation, as well as how variations within
these genes may interact within a common mechanistic framework.

Candidate region and genomewide association studies—Recent candidate-region
(152) and genomewide association studies (GWAS) (153-155) have uncovered additional
polymorphisms putatively involved in refractive regulation. These “hypothesis-free” studies
have yielded genetic associations that offer novel mechanisms for the molecular basis of
refractive development in human populations.

Surprisingly, two studies have implicated mitochondria-mediated cell death as a possible
mechanism in ocular refraction (152,155). Using multimarker fine-scale linkage
disequilibrium methods, Andrew et al.(152) showed statistical association of refractive error
to loci centered on three genes on chromosome 3g: MFN1; PSARL (or PARL); and
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SOX20T. Nakashiki et al.(155) identified a polymorphism (rs577948) at 11g24.1 adjacent
to the BLID gene that was associated with an elevated risk of pathological myopia (odds
ratio=1.37) in a Japanese group. MFN1, PSARL and BLID are expressed in mitochondria;
PSARL and BLID are involved in mitochondrial-led apoptosis, and MFNL1 is involved in
mitochondrial fusion. The mechanism by which mitochondrial programmed cell death can
lead to myopia has not been elucidated and this pathway should be validated in additional
studies. Nevertheless, these studies offer a novel mechanism for the genetic etiology of
refractive error and a promising avenue for future experimental studies of myopia based on
mitochondria-regulated cell apoptosis.

In a recent multi-phase GWAS of European-derived populations, Hysi et al. identified
several polymorphisms in a region at 15025 near the RASGRF1 gene in strong association
with ocular refraction (153). Their reverse transcriptase experiments also showed RASGRF1
to be highly expressed in human retina. RASGRF1 expression is regulated by muscarinic
receptors (156) and retinoic acid (157), both of which provide putative biological
mechanisms for refractive control. Anti-muscarinic agents are effective in preventing ocular
elongation in animal myopia models (158,159) and have been employed to reduce myopia
progression in human clinical trials (160-162). Moreover, Lin et al.(163), reported that
polymorphisms in the muscarinic acetylcholine receptor 1 gene (CHRM1) were associated
with high myopia in a Taiwanese population. Retinoic acid is differentially expressed in
eyes of chicks, and eutherian mammals (164,165) during experimental induction of myopia,
and has been shown to induce increased MMP-2 activity in mineralizing chicken
chondrocyte cultures (166) _ENREF_102. Hence, though RASGRF1 has not previously been
investigated in myopia studies, it may influence ocular growth and refraction through
complex biological interactions with a number of substrates known to be involved
myopization.

In a companion paper to Hysi et al.(153), Solouki and collaborators mapped a susceptibility
locus for refractive errors to an intergenic region at 15q14 (154). The most significant
association signal was found for a polymorphism in a putative regulatory region near the
genes GJD2 and ACTC1, both of which are expressed in the retina (154). GJD2 encodes a
neuron-specific protein (connexin36) that is found in retinal photoreceptors, amacrine and
bipolar cells. Connexin36 is essential in the transmission of rod-mediated visual signals in
the mammalian retina (167,168). Evidence of photoreceptor-mediated susceptibility to
myopia has previously been noted in rare X-linked disorders in which cone and/or rod
function is disrupted (169-174). To our knowledge, however, the association of a variant
near GJD?2 is the first evidence of a possible role for modulators of retinal visual signals in
susceptibility to common refractive errors.

We have shown that ocular refraction is a complex phenotype that is influenced by both
environmental factors and genetic predisposition. Numerous lines of evidence from
experimental myopia models and epidemiological studies have demonstrated that
environmental exposures play crucial roles in ocular growth and refractive development.
The precise biological mechanisms through which the environment influences ocular
refraction in humans are, however, still a matter of debate. It is likely that exogenous
variables interact with heritable factors to modulate eye growth during ocular development.

The evidence in favor of a role for genetic predisposition in refractive development is also
convincing. A number of linkage studies have mapped almaost 20 loci for high myopia,
moderate myopia, and refraction as a quantitative trait. Genetic association investigations
have identified variants in at least 25 genes putatively involved in ocular refraction.
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However, few positive association results have been convincingly replicated in independent
samples, and refractive error susceptibility alleles identified to date are generally estimated
to have low or modest effect sizes. This implies that most genetic variants involved in
human myopia and refractive control are yet to be discovered. It is also probable that
variants in several genes interact with one-another, as well as with environmental factors, to
mediate ocular growth and produce the distributions of refraction observed in human
populations. To our knowledge, gene-gene and gene-environment statistical interactions
have not been systematically assessed in genetic association studies of refractive
phenotypes.

Many genes found to be associated with human refractive error can be clustered into
common biological networks. The largest set of these genes is involved in connective tissue
growth and extracellular matrix reorganization. This group includes genes that encode
matrix metalloproteinases (MMP1, MMP2, MMP3, MMP9), growth factors and growth
factor receptors (HGF, TGFB1, TGFB2, MET), collagens (COL1A1, COL2A1), and
proteoglycans (LUM). More recently, two studies have provided evidence for
mitochondrial-mediated apoptosis as a novel mechanism for refractive error regulation
(152,155). Other possible sources of refractive variation in humans have been identified in
recent GWAS (153,154). One novel mechanism involves a pathway that includes Ras
protein-specific guanine nucleotide-releasing factor 1 (RASGRF1)(153) and muscarinic
acetylcholine receptor genes (CHRML1) (163); another implicates a role for genetic modifiers
of rod-mediated visual signal transmission (154). These biological mechanisms will require
external validation from experimental studies, but offer solid frameworks on which to build
more comprehensive models for refractive regulation in humans.

Genomewide association studies that are currently under way will help discover new
variants implicated in refractive errors, clarify the relationships between known myopia
susceptibility variants, and offer greater insight into the complex mechanisms underlying
refractive development. Ongoing international consortia will provide the large sample sizes
required to detect rare causative polymorphisms of small effect as well as gene-gene
interactions. Other promising avenues for genomic research into refractive errors include
pathway and gene-set enrichment analysis approaches, the study of ocular anatomical
components (such as axial length and eye shape) related to refractive error, and longitudinal
analyses of individual refractive changes over time. Developing the full picture of the
epidemiology of refractive error in human populations, however, will necessitate that both
environmental and genetic risk factors be accounted for in future genetic epidemiological
studies.
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Figure 1.

The anatomical basis of refractive errors.

LEFT: Myopia or nearsightedness (top left): parallel light rays from distant objects (dashed
lines) come to focus in front of the retina, causing blurred distance vision. Emmetropia or
“normal” vision (middle left): incident light from distant objects are focused on the retina.
Hyperopia or farsightedness (bottom left): images of distant objects are focused behind the
retinal plane in an unaccommodating eye. Illustrations modified from: the National Eye
Institute, National Institutes of Health (not copyrighted).

TOP RIGHT: Histological section of the posterior eye. The retina is a neurosensory tissue
that detects contrast, processes the signal locally through various spatial and temporal filters,
and sends the pre-processed visual signals to the visual cortex via the retinal ganglion cells.
When the retina is exposed to visual signal degradation during early ocular development, it
detects contrast deterioration and releases neurotransmitters to signal eye growth. These
signals pass though the retinal pigmented epithelium and the vascular choroid to reach the
fibrous sclera which responds with scleral tissue remodeling and axial eye growth.
BOTTOM RIGHT: Diagram illustrating the effects of form deprivation through neonatal lid
fusion on various eye dimensions in rhesus monkey. The temporal halves of the eyes are
juxtaposed. From Wiesel and Raviola (1977)(18), figure 2.

Clin Genet. Author manuscript; available in PMC 2012 April 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Wojciechowski Page 21

LAY i '
AN T N
Il Myopia N “-A\\‘agq"i\:‘::m_w
)
[ Hyperopia g
{ fN , AP
/ (J{/7("'ba”) India : v
Chile P \ PRV (rural) Malaysi \
/ 7 Malaysia
(Suburban)‘ \_,,,/\ {Suburban) j/ N
South Africa A 7
(semi-urban) \ & K/

Figure 2.

Prevalence of refractive errors among 15 year-olds in the Refractive Errors Study in
Children (RESC). Red shows prevalence of myopia (spherical equivalent refraction <-0.5 D
in both eyes); green shows prevalence of hyperopia (spherical equivalent refraction > +2.50
D in both eyes); grey shows prevalence of clinical emmetropia.
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Figure 3.

First-order biological interaction network for refraction-associated genes in table 2. Genes
that do not interact directly with other gene products in the network are omitted. Official
gene symbol, gene names and (alternative names): COLA1A=collagen, type I, alpha 1;
COL2A1= collagen, type Il, alpha 1; COL11Al1=collagen, type XI, alpha 1; HGF=
hepatocyte growth factor (hepapoietin A; scatter factor); MET= met proto-oncogene
(hepatocyte growth factor receptor); MMP1=matrix metallopeptidase 1 (interstitial
collagenase); MMP2=matrix metallopeptidase 2 (gelatinase A); MMP3=matrix
metallopeptidase 3 (stromelysin 1, progelatinase); MMP9=matrix metallopeptidase 9
(gelatinase B, 92kDa gelatinase, 92kDa type 1V collagenase); MMP13= matrix
metallopeptidase 13 (collagenase 3); LUM=Ilumican; PAX6= paired box 6; TGFB1=
transforming growth factor, beta 1; TGFB2= transforming growth factor, beta 2.
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